Discovery of spatial association rules in geo-referenced census data: A relational mining approach
نویسندگان
چکیده
Census data mining has great potential both in business development and in good public policy, but still must be solved in this field a number of research issues. In this paper, problems related to the geo-referenciation of census data are considered. In particular, the accommodation of the spatial dimension in census data mining is investigated for the task of discovering spatial association rules, that is, association rules involving spatial relations among (spatial) objects. The formulation of a new method based on a multi-relational data mining approach is proposed. It takes advantage of the representation and inference techniques developed in the field of Inductive Logic Programming (ILP). In particular, the expressive power of predicate logic is profitably used to represent both spatial relations and background knowledge, such as spatial hierarchies and rules for spatial qualitative reasoning. The logical notions of generality order and of the downward refinement operator on the space of patterns are profitably used to define both the search space and the search strategy. The proposed method has been implemented in the ILP system SPADA (Spatial Pattern Discovery Algorithm). SPADA has been interfaced both to a module for the extraction of spatial features from a spatial database and to a module for numerical attribute discretization. The three modules have been used in an application to urban accessibility of a hospital in Stockport, Greater Manchester. Results obtained through a spatial analysis of geo-referenced census data are illustrated.
منابع مشابه
Mining and Filtering Multi-level Spatial Association Rules with ARES
In spatial data mining, a common task is the discovery of spatial association rules from spatial databases. We propose a distributed system, named ARES that takes advantage of the use of a multi-relational approach to mine spatial association rules. It supports spatial database coupling and discovery of multi-level spatial association rules as a means for spatial data exploration. We also prese...
متن کاملMining interesting spatial association rules: two case studies
In spatial data mining, a common task is the discovery of spatial association rules from spatial databases. We propose a distributed system named ARES that assists data miners in the complex process of extracting the association rules from a spatial database. We also face a common problem of association rule mining, that is the high number of discovered rules. This affects both efficiency of th...
متن کاملMining Relational Association Rules for Propositional Classification
In traditional classification setting, training data are represented as a single table, where each row corresponds to an example and each column to a predictor variable or the target variable. However, this propositional (featurebased) representation is quite restrictive when data are organized into several tables of a database. In principle, relational data can be transformed into propositiona...
متن کاملMining Geo-Referenced Databases: A Way to Improve Decision-Making
Knowledge discovery in databases is a process that aims at the discovery of associations within data sets. The analysis of geo-referenced data demands a particular approach in this process. This chapter presents a new approach to the process of knowledge discovery, in which qualitative geographic identifiers give the positional aspects of geographic data. Those identifiers are manipulated using...
متن کاملDiscovering Associations between Spatial Objects: An ILP Application
In recent times, there is a growing interest in both the extension of data mining methods and techniques to spatial databases and the application of inductive logic programming (ILP) to knowledge discovery in databases (KDD). In this paper, an ILP application to association rule mining in spatial databases is presented. The discovery method has been implemented into the ILP system SPADA, which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 7 شماره
صفحات -
تاریخ انتشار 2003